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ABSTRACT 

The known general solution of the system of linearized equations for non-viscous, adiabatic, quasi-hydrostatic 
flow on an equatorially oriented @-plane is examined in detail for various boundary conditions imposed on the motion. 
The base state is a space-time invariant zonal current. The particular solutions examined are those in which the 
meridional wind component is distributed either symmetrically or asymmetrically about the equator, and is con- 
strained either to vanish at  finite distance from the equator or to decay exponentially at  large distance from the 
equator. The various solutions considered depict disturbances which are characterized by (1) very small values of 
divergence which increase with wavelength (in most cases), (2) relative vorticity which is meteorologically reasonable, 
and (3) in general, a non-geostrophic wind-pressure relationship. 

1. INTRODUCTION 

In a recent study, Rosenthal [l] obtained the general 
solution of the linearized system of equations for non- 
viscous, adiabatic, quasi-hydrostatic flow on an equa- 
torially oriented @-plane. Rosenthal examined one 
particular solution in detail, that in which the meridional 
wind component was symmetric witfh respect to the 
equator and decayed exponentially with the square of the 
distance from the equator. Subsequently, Matsuno [2] 
solved a similar system of equations. He considered R 
class of particular solutions in which the meridional wind 
is constrained to approach zero as the distance from the 
equator approaches infinity. Rosenthal’s solution was 
among t,hose treated by Matsuno. Both Rosenthal and 
Matsuno were concerned with the extent to which their 
wave solutions could be considered meteorological rather 
than inertia-gravitational in nature. Matsuno proceeded 
by examining the frequency as a function of wavelength 
and by pictorial comparisons between wind and pressure 
fields for several of his cases. Rosenthal, on the other 
hand, made detailed studies of the wind, pressure, vor- 
ticity, and divergence fields and performed numerous 
calculations which clearly showed the meteorological 
nature of the system. 

In  this report, other particular solutions are examined 
in detail, specifically, solutions in which the meridional 
velocity is required to vanish a t  fixed distances from the 
equator. The format of the study is similar to that of 
Rosenthal. 

In view of the fact that neither Matsuno’s nor Rosen- 
thal’s model provides a source of perturbation energy, the 

solutions cannot describe the life cycles of the disturbances 
under consideration. The results then are artificial in the 
sense that waves of this type are relatively steady for all 
time and no information is provided concerning their 
origin. Hon-ever, as pointed out by Rosenthal [l], they 
do have a remarkable similarity to the equatorial dis- 
turbances discussed by Palmer [3]. Furthermore, it 
would seem that an understanding of the dynamics of 
these simple disturbances is a mandatory prerequisite to 
understanding the dynamics of equatorial disturbances in 
the real atmosphere. 

2. THE SOLUTIONS 

The reader is directed to Rosenthal’s paper for the 
complete development of the general solution which de- 
scribes the model; here only a brief outline of the de- 
velopment will be presented. Notation is consistent 
with that of Rosenthal. 

The linearized equations for non-viscous, adiabatic, 
quasi-hydrostatic, @-plane flow are 

(3) 
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(4) upon the motion. Rearrangement of the terms in equa- 
tion (12) gives the frequency equation 

(13) 
1 r2@- A3-p (k2r2+ Y@+ 2 a P ~  )A + - 0 Here u, v ,  w ,  and 4 are, respectively, the perturbation 

zonal wind component, meridional wind component, 
p-system vertical motion, and geopotential of the iso- 

distance measured positive northmard from the equator, 
p is pressure, and @ is the meridional rate of change of 
the Coriolis parameterf. Here, @=constant. T=T(y ,p) ,  U, 
and with Rosenthal's frequency equation. 

I baric surfaces; t is time, s is zonal distance, y is meridional which determines the wave speed u- A). In  
general, the analytic expressions for the roots of equation 
(13) are algebraically complicated [5] (see Appendix) and 
cannot be interpreted in a simple manner as was the case 

By setting Kz= 0, we have the solution, 

(5) 

are base state quantities with u and a assumed constant. 
With the condition that Z, be a maximum at x=O, 

p=p,, and t=O, the system of equations (l), (2), (31, (4) 
has solutions of the form 

in which v is symmetric about the equator and which l ~ u  
be called the Symmetric Mode. 

With Kl=O, we have, 

n=A(y )  sink(z-ct) cos m(p--po) 

v=B(y)  cosk(z-ct) cos m(p-po)  (7) 

4=H(y) sink(s-ct) cos m(p-po)  (8) 

I u = W ( y )  cosk(s-ct) sin m(p-po)  (9) 

I where k=2n/L,L is the wavelength, c equals the wave speed, 
and m=nnlpo, n=1, 2, , . . . Substitution of equations 
(6), (7), (8), (9) into equations ( l ) ,  (2), ( 3 ) ,  (4) yields a 
system of linear differential equations in which the 
dependent variables are the coefficients A (y), B ( y )  , 
H(y), and W(y). This system may be reduced to a 
second order differential equation for the coefficient 
B = B ( y ) :  

where y=G"/m and A = U - c .  Equation (10) trans- 
forms into a special case of the confluent hypergeometric 
equation which is solved to yield the following general 
solution for B ( y ) :  

Here Kl and K, are arbitrary constants, M(a, b ,  2) is the 
confluent hypergeometric function [4], and 

o* 

and v is constrained to be asymmetric about the equator. 
This solution will be called the Asymmetric Mode. The 
particular solutions examined in the following sections 
mill be restricted t o  either the Symmetric or Asymmetric 
Mode. 

Matsuno considered only those cases in which the pa- 
rameter a took on integral values. For a equal to  an even 
integer, equation (14) reduces to 

and for a equal to an odd integer equation (15) becomes 

where H,(x) is the Hermite polynomial of order n. Mat- 
sun0 took the solution (14a) for even integral values of a 
and (15a) for odd integral values of a. These are the 
only solutions which do not tend toward infinity as y 
becomes large. 

If, however, we limit the solutions to a zonal channel 
centered on the equator and enforce the boundary con- 
dition v=O at y= f yW (yW finite), then a is determined as 
a=a* where 

[ p- k2A( 1 -A2/y2)] -Ab 
2Ab (12) depending upon whether the Symmetric or Asymmetric 

Mode is being considered. For these solutions, the fact 
that B1 and Bz approach infinity as y approaches infinity 

a= 

Values of a! are determined by the side conditions imposed 
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becomes very poor as y becomes large, the system (I), (2), 
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(3), (4) is unrealistic at  large y. This is a second reason 
for restricting the solutions to a band of latitudes near the 
equator. 

For arbitrary values of yW, CY* must be found numerically 
through an iterative procedure which operates on a trun- 
cated form of M(a, b,  2). Figure 1 shows values ob- 
tained in this way. As yw becomes large, aS+O and 
aA-+l. As yul becomes small, as and both tend toward 
infinity. 

the remaining amplitude functions are given by 
BY use of equations (11, (2), (3)l (41, (61, (71, (8), (9), 

and 

'\ 
\ 

I I I I I I \  I I 
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0.1 

THE SYMMETRIC MODE 

If we require that v=va at x=O, y=O, t = O ,  we have, yw Ikm) 

FIGURE 1.-Values of CY* and gW such that equations (16a) and 
(16b) are satisfied. S and A denote, respectively, the curves 
which give values of a* appropriate for the Symmetric and 
Asymmetric Modes. 

from equations (7) and (14), 

Bl( 0 )  = K, =vo 
and 

(20) 

Substitution of equation (20) into equations (17), (18), 
and (19) yields the Symmetric Mode solutions for the 
perturbation quantities u, v, 9, and w .  

and 

From (22), 

Xsin k(z--ct) COS m(p-po) (21) for all cases in the Symmetric Mode. 
By setting a=O, 

B, =voe-rW2/2r 
v=vOe-B'J2fzY M cos k(x-ct)  cos m(p-po)  (22) 

+=- ~oyf l7~ e-rW2/2r { M + g y M * }  since 
k(A+Y) 

Xsin k(z-et)  cos m(p-po)  (23) 
and 

Xcos k(z--et) sin m(p-po) (24) 
where 

this is the case treated by Rosenthal [l]. 

In this case the solutions for u, v, 4, and o reduce to 

u=- vOpy e-@2/2r sin k(z -c t )  cos m(p-po)  (26)  
W S Y )  

v=voe-m2/2r cos k(z -e t )  COS m(p-po) 
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Substitution of equation (15) into equations (17), (18), 
and (19) gives the amplitudes of the perturbation quanti- $= Kz[ (A-r 1 PY2 -A71 ( Pr)’ /ze-fly2 /zr 
ties for the Asymmetric Mode. The solutions for u, v, k( A2-y 2) 

X{sin k ( z - e t )  cos m(p--po) ) (37) 4, and w are 

In the Asymmetric Mode, (v( is a maximum (v,,,) a t  
y= ym where ym satisfies the condition 

2) = Kz (fJf2 e - p v 2 / 2 7 2  COS k ( ~ - ~ t )  COS m(p-po)  (31) 

+ [ ( A - - T ) P ~ ~ - - A Y ] ~  } sin k(z-ct) cos m(p-po) (32) 
l and 

and I 

P& - 2 
( l - ~ ) & = u m - k ~  (1-a) - Y M;-,m=~ (39) 

+ [ ( A - y ) p y 2 - A 7 1 ~ }  cos k(z-ct)  sin m (p-po) (33) 3. DISCUSSION 

Table 1 lists the three roots of the frequency equation 
Table IC lists values of the roots compared with where (13). 

l and 

The asymmetric case analogous to (25) is obtained by 
setting a= 1. This gives 

(34) 

For the Asymmetric Decay case,’ the solutions for u, v, 
1. and w are 

1 For reference purposes, solutions (25) and (34) will be referred to, respectively, as the 
“Symmetric Decay case” and the “Asymmetric Decay case.” 

which is the value of A appropriate for nondivergent 
motion. The parameter E is )/4 in the Symmetric Mode, 
1 in the Asymmetric Mode, and zero in the decay cases 
for both modes. For the wavelengths considered, the 
roots AI and Az correspond to rapidly moving inertia- 
gravity waves. The meteorologically significant root, 
which gives small phase speeds relative to the basic 
current for wavelengths in the synoptic range, is A3. 
As pointed out by Matsuno [2], A3 can become quite large 
at  very long wavelengths. However, the wavelengths 
at  which this occurs are far larger than those considered 
here and, in fact, are probably large enough to invalidate 
the p-plane approximation. 

Further discussion will be limited to  the root A3 and the 
subscript will be omitted. Comparison of A with AND 
shows that in both modes the difference AND- A increases 
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TABLE 1.-Values of AI, Az, A3, AND, A K D - A ~ ,  computed from the frequency equation. AND is a value of A appropriate for nondivergent motion. 
Units are m./sec., n corresponds to the number of levels of nondivergence, and T=3 m.t.s. units 

n = 2  ! ! n = l  

Symmetric 

Decay I 2375 I Y . ~ =  m. I 1125 luwk . 

L(km.) Asymmetric Symmetric Asymmetric 

D e w  [ d;;Ln. I 1125 IirwI= km. Decay I dk(6.k;. 1 1125km. M =  Decay 1 2375 m. I 1125km. lirWl= 

1000.--. .______.._____._____ -55.7 -55.8 -56.8 -56.3 -56.8 -60.6 -28.1 -28.1 
2000 ____....____....____-..- -57.4 -57.7 -61.3 -59.5 -61.4 -74.5 -29.7 -29.8 
3000 ____.....___....__._-.-. -59.9 4 0 . 1  -68.1 -64.4 -68.3 -93.0 -32.0 -32.1 
4000 ____..___...____....____ -63.2 -64.5 -76.5 -70.5 -76.8 -113.9 -34.9 -35.0 
5000 ________....___...______ -67.0 -68.9 -85.8 -77.5 -86.2 -136.0 -38.1 -38.2 

-28.5 -28.7 -28.8 -30.5 
-31.2 -31.7 -32.0 -31.8 
-35.1 -36.1 -36.7 -47.3 
-40.0 -41.2 -42.1 -58.0 
- 4 . 7  -46.8 -48.1 -69.2 

1000 _______.....__...___-..- 
zoo0 ___.___.....___...__~... 
3000. 
4 0 0 0 - ~ - ~ . . ~ ~ ~ ~ . . . ~ ~ ~ ~ . . . . ~ ~ ~  
5000 _______.._____..___...-- 

- _. _. . - - _._. . - _ _  .. ~ - - 
55.1 55.2 56.2 55.7 56.2 60.1 27.6 27.6 28.0 28.1 28.2 30.0 
55.1 55.5 59.4 57.4 59.5 73.2 27.6 27.6 29.3 29.9 30.2 36.5 
55.1 56.1 64.5 60.3 64.8 91. 2 27.6 27.7 31.5 32.7 33.5 45.5 
55.1 56.8 71.2 64.3 71.6 111.7 27.6 27.8 34.5 36.5 37.7 55.8 
55.1 57.9 79.3 69.3 79.8 133.6 27.6 28.0 38.2 41. 1 42.8 €6.8 

0.573 
0.567 
0.006 
2.22 
2. 14 
0. as 
4.74 
4.45 
0.29 
7.87 
7.23 
0.64 

11.34 
10.29 
1.05 

0.579 
0.562 
0.017 
2.32 
2.06 
0.26 
5.21 
4.08 
1. 13 
9.27 
6. 21 
3.06 

14.48 
8.20 
6.28 

0.552 
0.551 
0.001 
1.94 
1.92 
0.02 
3. 61 
3.59 
0.02 
5.18 
5.15 
0.03 
6.48 
6.43 
0.05 

0.555 
0.551 
0.004 
1.97 
1.93 
0.04 
3.73 
3.58 
0. 15 
5.42 
5.12 
0.30 
6.87 
6.39 
0.48 

AND ___.....___....__.. 
1000 A3 _______..___....___.. 

AND-& _...___.._.__.. 
AND ____....___....___. 

AND-AJ __._ ~ _...___.._ 
2000 A3 ____....___...__..... 

AND __...__._..._....__ 

AND-AJ ____....___..__ 
3000 A8 ___....__._...___..._ 

AND __.____._..__....__ 

AND-& _..___...._.... 
4000 A3 _______..._.___._..__ 

AND ____..._____.___... 

AND-A3 __...____._.._. 
A3 ____.___......___..._ 

1 
1 
1 
1 

This follows from an examination of the model vorticity equation 

- D (---)=-&I au Su (az+&Ba. bu av Dt ax bp 

0.579 
0.573 
0.006 
2.32 

0.09 
2.23 

5.21 

0.41 
4.80 

9.27 

1.19 
8.08 

14.48 

2.57 
11.91 

0.579 
0.567 
0.012 
2.32 
2.15 
0.17 
5.21 
4.48 
0. 73 
9.27 
7.32 
1.95 

14.48 
10.49 
3.99 

0.573 
0.571 
0.002 
2.22 
2.20 
0.02 
4.74 
4.65 
0.09 
7.87 
7.88 
0.19 

11.34 
11.02 
0.32 

with wavelength and yw. This implies that the model 
divergence has greater significance a t  longer wavelengths, 
but for a given wavelength the significance diminishes as 
the latitudinal extent of the perturbation is reduced. In  
general, the model divergence appears to  be more signifi- 
cant in the Asymmetric Mode. 

As was pointed out by Rosenthal for the Symmetric 
Decay case, the effect of the divergence is a retardation of 
the westward movement of the perturbations relative to  
the basic current as is evidenced by the difference AND-- .  
Hence, in both modes, the divergence patterns must be as 
described by Rosenthal; i.e., there is divergence to  the 
west of the cyclonic relative vorticity centers and con- 
vergence to  the east of these centers.2 Also, we can 
expect the magnitude of the Asymmetric Mode divergences 
to be larger than those of the Symmetric Mode. 

The amplitudes of the model relative vorticity f and the 

model divergence D can be written in terms of the am- 
plitude of u,  

A 

0.552 
0.552 
0.000 
1.935 
1.932 
0.001 
3.609 
3.603 
0. W6 
5.177 
5.169 
0.008 
6.480 
6. 468 
0.012 

0.579 
0.545 
0.034 
2.32 
1.86 
0.46 
5.21 
3.36 
1.85 
9.27 
4. 88 
4.59 

14.48 
5.72 
8.76 

0.555 
0.542 
0.013 
1.97 
1.82 
0. 15 
3.73 
3.23 
0. 50 
5.42 
4.43 
0.99 
6.87 
5.35 
1.52 

0.484 
0.481 
0.003 
1.29 
1.28 
0.01 
1.88 
1.84 
0. 04 
2.23 
2.18 
0.05 
2.44 
2.38 
0.06 

and 

In the Symmetric Mode, is a maximum a t  the 
equator, 

(43) 

which is a function of wavelength and ys (through A).3 
Table 2 lists values of for this mode. In  the 
Asymmetric Mode, f = O  at the equator and maximum 
values of occur at  points symmetrically equidistant 
from the equator. Table 3 lists values of I f l m , ,  along 
with the distances from the equator at which they occur. 

Both tables 2 and 3 show that ltlmuz has a magnitude 
which is meteorologically significant and which decreases 
with increasing wavelength except in the cases yw= f 1125 

3 Rosenthal's equation (51) reduces to (43). 



288 MONTHLY WEATHER REVIEW Vol. 95, No. 5 

n = t  
Case L (km.) 

Ii.lm..XlOJ 6 

TABLE 2.-Values of tmax for the cases in the Symmetric- Mode. 
Values are scaled by 106 and are zn units v0=6 m.p.s., u=S m.t.s. 

of set.-' 

n=l  n=2 - 
Decay y,=+2375 y,=f1125 

km. 1 km. I km. 

n=2 - - 
/ ~ l m a r X I O ~  6 

-__ I- I I 11-1 I 

y,=f1125 km ______.__._____._ 

3.19 3.30 3.21 3.21 3.30 

1.41 
0.82 1.41 0.87 0.88 1.41 

2000 

~ _ _ _ _ - ~ ~  
1000 0.11 700 0.45 700 
2000 0.29 675 1.14 670 
3000 0.40 650 1.59 630 

0.47 625 1.86 615 I 0.51 590 2.01 585 

-__-I_________p_______ 

1000 3.25 1150 3.30 1025 
2000 975 ;:!: 1 930 
4mn 1.34 io9n 1.43 915 

y,=*2375 km _._.._...__..._. (I 3000 1 i::: 1 ;% 1 
1000 3.75 560 3.76 550 

2.82 560 2.83 550 
2.91 560 2.92 550 
3.27 560 3.28 550 

5000 3.73 560 3.74 550 

yw=*1125 Bm ____..._...._..__ 

km. For this ym, in the Symmetric Mode, l ? l m u z  has 
minimum values for wavelengths in the 4000-5000-km. 
range although this is not clear from the table. In  the 
Asymmetric Mode, minimum values of ltlmuz occur for 
wavelengths in the 2000-3000-km. range. 

Maximum values of ID/ are found a t  points sym- 
metrically equidistant from the equator in both modes. 
Tables 4 and 5 list values of along with the ap- 
proximate distance of the maxima from the equator. 
In  the Symmetric Mode this distance is given by y=ym 
which satisfies the condition 

A 

A 

[PA ( y 2  - A ~ )  + p2&( A - Y ) 1 M, = ,, - &AP~&M; = ,, = 0. (44 ) 

For the decay case, 

ym= * ($ ) t i2  (45) 

A 
Maximum values of ID1 are then given by4 (in the decay 
case) 

4 Equations (45) and (46) are identical to Rosenthal’s equations (50). 

(46) 

A 
TABLE 4.-Vaalues of lDlmax f o r  the cases in the Symmetric Mode. 

vma.=6 m.p.s., ;=3 m.t.s. Values are scaled by lo7 and are in units 
of sec.--’. 6 i s  the approzimate distance (in kilometers) f rom the 
equator of the maximum values. 

I I 

1000 
2000 
3000 
4000 2.50 
5000 3.47 7.62 

!!!! 
_ _ _ _ _ _ _ _ - ~  

1000 1055 :$ 1045 

4000 1 t i  I 8 11 5.43 !: 1 1035 1040 
5000 2.31 6.95 la30 ----- - 
1000 0.08 605 0.31 600 

0.23 575 0.90 565 
0.33 540 1.30 525 
0.35 500 1.34 475 

5000 0.32 440 1.25 425 

y,=f1125 km. ._____.____ 

TABLE 5.-Values of lfilmax for the cases in the Asymmetric Mode. 
Same remarks as table 4 

Decay ... .___._.__..__._..____ 

In the Asymmetric Mode, the distances from the 
equator to the divergence maxima are given by y=y, 
which satisfy the condition 

Y 

[ A ~ 2 ( ~ 2 - A 2 ) > S P * ~ ~ ( A - ~ )  k b 2 I M y = w m  

2 +3 (l-a)rP~y;Gl’=w,=o. (47) 

In the decay case, 

and 

Analysis of the ratio Ib)AImuz/l~,slmuz (equations (46) and 
(49)) shows that in the decay case the Asymmetric Mode 
divergences are larger than those of the Symmetric Mode 
for all wavelengths under consideration. The values of 
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Decay _.____........___. 

y,=f2375km _.._.... ~- 

TABLE 6.-Values of the ratio - If;PI 

6.34X10-4 1.ZlXlC-3 
4.66X10-3 S. 41XlG-3 
1.37X10-2 2.26XlG-2 
2 . 7 8 X l W  4.02X10-2 

5000 4.57X10-2 5.75X10-2 

5.17XlG-4 8.31X10-4 
3.64XlG-3 5.03X10-3 
1.02X10-2 1.14X10-2 

4000 1.88X10-2 1 . 7 5 X l W  
2.82X10-2 2.19XlG-2 

_____ 

L=rnO, It=l L=5000, n = 2  

Symmetric Mode 

0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.005 
0. MI1 
0.0 

20.0 
17. 5 
15. 0 
12. 5 
10.0 
7. 5 
5. 0 
2. 5 
0 

...__..._..... 1.11 
__.___..____.. 0.85 
__.__..___..._ 0.62 
..._...__...._ 0.43 

m *  0.29 
0.007 0.16 
0,003 0.07 
0. 001 0.02 
0.0 0.0 

0. 08 
0.06 
0.04 
0.03 
0. 02 
0.01 

, 0.005 
0.001 1 0.0 

- 

y,=*1125 km __......__ 

1000 2.43X10-4 3. MXlO-4 
1.21X10-3 1.03X10-3 
2.17X10-3 1.38X10-3 

4000 2.47X10-3 1.44X10-3 
5000 2 .27XlW 1.38X10-3 

0. 75 
0.53 
0. 53 
0. 39 
0. 27 
0. 15 
0.07 
0.02 
0. 0 

20.0 0.07 0.05 __._.._.._____ 
17. 5 0.06 0.05 ___...__.____. 
15.0 0.04 0.04 .____.________ 
12. 5 0.03 0.03 ..___.____.... 
10.0 0.02 0.02 m' 
7. 5 0. 01 0.01 0.006 
5. 0 0. 006 0.006 0.003 
2. 5 0.002 0.002 0.001 

0.017 
0.007 

0.74 
0.57 
0.44 
0.32 
0.22 
0. 14 
0.09 
0.06 

I I I I 1 I 

Asymmetric Mode 

0.25 
0.45 
0.37 
0.28 
0. 20 
0. 13 
0.08 
0.05 

...__...__._.. 

..____... ~ _ _ _ _  

..__..____.._. 

...._...-__.__ 
,* 

0.032 
0.022 
0.012 

'The ratio is infinite at 1125 km. 

A listed in table IC suggest that this relationship holds 
in the other cases also. 

The maximum divergences increase with wavelength 
except for the Symmetric Mode case with yzo= 1125 km. 
For this case, the divergence has maximum values for 
wavelengths in the 3000-4000-km. range. 

The contribution of the model divergence to vorticity 
changes is essentially the same as that described by 
Rosenthal [l]. The Asymmetric Mode differs little from 
the Symmetric Mode. Table 6 lists values of If V. 
for the various cases with L=2000 km., n=1, and L=5000 
km., n=2. The contribution is negligible except for 
the longer wavelengths with n=2.  Here the ratio is 
still small when IywI is small. However, in the decay 
cases and for large values of lyzoI, the contribution is 
appreciable to  within 5" of the equator. 

The model divergences are extremely small in com- 
parison to the observed magnitudes associated with 
equatorial disturbances as given by Palmer [3]. As 
pointed out by Rosenthal [l], this discrepancy is probably 
due to  the lack of a convective heat source in the model. 

Values of the ratio ~ ~ ~ m u z / ~ ~ ~ m u z  are given by table 7. 
We note that the ratio increases with increasing Iyzo/. 
The ratio also increases with wavelength except in the 
cases yw= f 1125 km. Here, maximum values are found 
for wavelengths in the 3000-4000-km. range. 

In order to examine the extent to which the perturba- 
tion flow is in geostrophic equilibrium, we define 

du du -+U- at ax 
BYV 

R m =  

TABLE 7.-Values of the ratio Iblmal/lilGar 

Case I L (km) 1 Symmetric 1 Asymmetric 

(a) n=l 

I ' I  

Decay _ _ _ _  .. . ... .- 

1000 1.69X10-3 2.96X10-3 
2000 1.14XlO-2 1.7OX10-2 

11w=12375 km .......... I( 3OIg 1 2.WX10-2 I 3.67X10-2 
5.38X10-2 5.29X10-2 
7.9OX10-2 6.33X10-2 __ 

1000 9.30X10-4 1.2OXlO-3 

g,=+1125 km .... ~ ....- 

TABLE 8.-Behavior of the ratios Ro,, Roy at the equator and at the 
meridional extreme of their definition 

1 Evaluated at lim y+m I 1 Evaluated at y = O  
U = f U . n  

@.. -. __. . . . . . -. ..... 

b, _.__. _. . . . . .. . .. . . . 

g; --.. . . . . .. - -. .~. . . 

m 0 

m lo-- 

and 

(50a) Substitution of the solutions for u and v into these ex- 
pressions yields 
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where the superscript S refers to  the Symmetric Mode 
and A refers to the Asymmetric Mode. (M,  M*, c, 6* 
are defined by equations (24a), (24b), (33a), and (33b).) 
Roz and R,, are measures of the geostrophic equilibrium 
of the meridional and zonal velocity components, re- 
spectively. Small values of these ratios correspond to 
quasi-geos trophic motion and large values indicate 
highly ageostrophic flow. In the decay cases, equations 

(51), (52), (53), (54) reduce to the following (superscript 
D denotes these cases): 

Table 8 summarizes the behavior of these ratios at  the 
equator and a t  the latitudinal limit of their definition. 
The latitudinal variation of Roz is shown in figure 2 for 
L=2000 km., n=1. For each value of yzD, Roz increases 
with wavelength but the shapes of the curves are similar 
to  those shown by figure 2. Except in the decay case, 
where RLD is independent of latitude, RE is smallest near 
the equator and approaches infinity as y approaches yLp. 
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FIGURE 2.-Values of the ratio Roz (equation (50a)) for cases in the Asymmetric Mode (denoted by superscript A )  and Symmetric Mode 
The solid line represents values for the decay case, the broken line the case yW= f 2375 km., and the dashed h e  (superscript 8). 

the case yrv= & 1125 km. 
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Hence, in the symmetrical cases, the meridional compo- 
nent of the perturbation wind is most nearly geostrophic 
a t  the equator and becomes increasingly ageostrophic at  
higher latitudes. On the other hand, the perturbation 
v-component ^becomes increasingly ageostrophic in the 
symmetric case as the perturbations are confined to  
smaller and smaller (decreasing lywl) bands of latitude 
surrounding the equator. As indicated above, the meridi- 
onal component of the perturbation wind becomes increas- 
ingly ageostrophic as the wavelength increases. 

In  the asymmetric cases, R: approaches infinity as the 
equator is approached. Hence, near the equator, in the 
Asymmetric Mode, the v-component of the perturbation 
wind is highly ageostrophic. In  the decay case, the v- 
component becomes near geostrophic a t  higher latitudes. 
In the other cases, v is highly ageostrophic near y= yw as 
well as near the equator. Geostrophy is, however, ap- 
proached in a narrow band of latitudes intermediate to  
the equator and y=ym. 

Figure 3 shows the latitudinal variation of Row for 
L=2000 lun. and n=l .  Rtf is independent of wave- 
length. For the other cases, in contrast to  Ro,, Ro, 
shows a small decrease with increases in wavelength. 

The curves for other wavelengths, however, are very 
much like those shown by figure 3. The values of Rfu 
show that the perturbation u-component is highly age- 
ostrophic near the equator, that it becomes less age- 
ostrophic as the meridional extent of the -perturbation is 
diminished, and slightly less ageostrophic as the wave- 
length is increased. 

The behavior of the u-component, in the Asymmetric 
Mode, is similar except that R; tends to  infinite values 
near y=1700 km. (15" lat.) in the decay case and near 
y= ym/2 in the other cases. As the equator is approached, 
the perturbation zonal wind tends toward geostrophy but 
R$ still remains greater than 0.5. 

Finally, we note that, in the Symmetric Mode, Roz 
increases and Roy decreases as n (the number of levels of 
nondivergence) increases. The opposite is true in the 
Asymmetric Mode. The changes in Roz and Row with n 
are most marked when lyWl is large. 

I 
I 

4. SYNOPTIC ASPECTS OF THE SOLUTIONS 
Figures 4, 5, and 6 present analyses of the pressure 

and wind fields for the Asymmetric Decay case (fig. 4), 
the Symmetric (fig. 5) and Asymmetric (fig. 6) cases 
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FIGURE 3.-Values of the ratio Ro, (equation (50b)) for cases in the Asymmetric Mode (denoted by superscript A )  and Symmetric Mode 
The solid line represents values for the decay case, the broken line the case urn= f 2375 km., and the dashed line (superscript S). 
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292 MONTHLY WEATHER REVIEW Vol. 95, No. 5 

I '  
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6:. I 12 14 

FIGURE 4.-Asymmetric Decay case. (a) Perturbation pressure-height contours (dashed lines) and streamlines (solid lines). Heights 
are in meters. (b) Combined base state and pertur- 
bation pressure-height contours (dashed lines) and streamlines (solid lines). Heights are in meters. U= - 7.5 m. sec-1 Parameters 
as in (a). (c) Model relative vorticity. Isopleths are labeled in units of set.-' Counterclockwise rotation is indicated by 
positive values. Parameters as in (a). (d) Model divergence. Isopleths are labeled in units of 10-8 sec.-l Parameters as in (a). 

vmaZ=5 m. sec.-I, n=l, L=2000 km., a = 3  m.t.s. units, p = l O O O  mb., t=O. 



May 1967 Walter James Koss 2 93 
- 

with ym=f1125 km. Here p = l O O O  mb., t=O, ~ = 3  
m.t.s. units, L=2000 km., n=1, and vmax=5 m'.sec.-* 
Similar charts were given by Rosenthal [I] for the Sym- 
metric Decay case (with the same values for the various 
parameters). The figures given here have essentially the 
same scales which facilitates comparisons. The stream- 
lines shown were constructed from isogon analyses. The 
base state pressure height fields were computed from the 
relation b&dy= -pyU, U= -7.5 m./sec. 

T H E  ASYMMETRIC D E C A Y  CASE 

Figure 4a shows the pressure-height field and stream- 
lines for the perturbation motion; both fields are sym- 
metric about the equator. The pressure-height and 
circulation centers are each equidistant from the equator 
and alternate with longitude. The Highs and Lows are 
centered near 20' N. and S.; the circulation centers are 
near 14' N. and S. In  both hemispheres, anticyclonic 
circulation is associated with high pressure and cyclonic 
motion with low pressure. The pressure centers are 
characterized by non-zero components of perturbation 
velocity. Recalling R,A, (fig. 3) we note these regions 
are characterized by a highly ageostrophic perturbation 
u-component. Similarly the equatorial region, where 
there are non-zero perturbation pressure-height values, 
is where 11 is highly ageostrophic (see fig. 2, R&). The 
maximum magnitude of the perturbation pressure-height 
is approximately 7 m., which is twice that of the Sym- 
metric Decay case (see Rosenthal, [l] fig. 2). 

The combined perturbation and base state height 
fields and streamlines are shown in figure 4b. Here we 
find a weak Low (minimum height of -0.4 m.) centered 
on the equator with an easterly zonal current passing 
through the center of the Low. The height gradients 
in the zone bounded by 10°N.-lOOS. are very weak 
and would probably be undetectable in the present-day 
synoptic observational network. 

The relative vorticity and divergence patterns are 
shown in figures 4c and 4d. The vorticity pattern is 
asymmetric about the equator with maximum values 
located about 14' from the equator. Positive values 
are associated with counterclockwise motion, hence with 
cyclonic motion in the Northern Hemisphere and anti- 
cyclonic motion in the Southern Hemisphere. The 
opposite is true for the negative values. Therefore, 
as in the Symmetric Decay case, cyclonic relative vorticity 
is always associated with low values of perturbation 
pressure-height. The divergence pattern is symmetric 
about the equator with maximum values of convergence 
and divergence about 20' from the equator. Similar to 
the Symmetric Mode, the divergence centers are to the 
west of the cyclonic relative vorticity centers and the 
convergence centers are to  the west of the anticyclonic 
relative vorticity centers. These distributions agree with 
those previously deduced from the behavior of the wave 
speed e= U-A. 

In  contrast with the Symmetric Decay case, the total 
pressure-height field and streamlines (fig. 4b) depict wave 
disturbances which have maximum amplitude between 
10' and 15' from the equator. 

THE SYMMETRIC CASE Y w =  f l l P 5  KM. 

The configuration of pressure patterns and streamlines 
for this case are similar to  those of the decay case dis- 
cussed by Rosenthal [l] except that here we note the effect 
of the vanishing of the perturbation meridional wind 
component a t  a finite distance from the equator. Fig- 
ure 5a shows the perturbation pressure-height field and 
streamlines. As in the decay case, the height field is 
asymmetric about the equator and consists of alternating 
Highs and Lows. The maximum amplitude is slightly 
larger than 1 m. which is about one-third that of the 
decay case. The circulation centers are alternating 
clockwise, counterclockwise cells centered on the equa- 
tor and, of course, the perturbation circulation reduces 
to  east-west motion a t  yw= f 1125 km. 

The combined perturbation and base state pressure- 
height field and streamlines are depicted in figure 5b. 
The streamline pattern is essentially that of the decay case 
except that the amplitude of the streamlines vanishes 
near 10" N. and 10" S. At these latitudes the ageostrophic 
character of the wind field is shown by the fact that the 
streamlines and pressure-height contours are out of phase. 
The minimum pressure-heights in the equatorial Lows 
are approximately -0.2 m. 

The relative vorticity pattern (fig. 5c) consists of alter- 
nating positive and negative centers which coincide with 
the perturbation circulation centers (fig. 5a). Low (high) 
perturbation pressure-height values are coupled with 
cyclonic (anticyclonic) motion. The configuration of 
the divergence pattern (fig. 5d) is also similar to the decay 
case with divergence (convergence) to  the west of the 
cyclonic (anticyclonic) relative vorticity. In comparison 
to the decay case, we find (1) a reduction of the amplitude 
of the pressure-height perturbation, (2) marked decreases 
in the amplitude of the model divergence, and (3) a slight 
increase in the amplitude of the model relative vorticity. 

THE ASYMMETRIC CASE Yzo= fl145 KM. 

The remarks concerning the symmetry and relative dis- 
tributions of the various fields presented in the discussion 
of the Asymmetric Decay case apply also to this case. 
Here we will note the differences in the distributions. 
Figure 6a shows the pressure-height contours and stream- 
lines of the perturbation motion. The circulation and 
pressure centers are nearly coincident but the amplitude 
of the pressure-height field is less than that in the decay 
case. The combined base state and perturbation height 
field and streamlines (fig. 6b) have the same character as 
those in the decay case except the Low centered on the 
equator has a slight increase in amplitude (to -0.6 m.). 
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The relative vorticity and divergence patterns are shown 
in figures 6c and 6d. In  this mode, the effects of de- 
creasing the lateral extent of the disturbance are similar 
to those in the Symmetric Mode except for a slight in- 
crease in the amplitude of the equatorial Low in the 
to  tal pressure-heigh t field. 

I 

5. SUMMARY AND CONCLUSIONS 
I 

We have considered adiabatic, inviscid, quasi-hydro- 
static, p-plane motions in which the perturbation meridio- 
nal velocity component w is (A) symmetrically, and (B) 
asymmetrically distributed about the equator. The base 
state flow was taken as a constant easterly current. I n  
these two modes of motion, u was constrained to vanish 
(1) as the distance from the equator approached infinity, 
and (2) a t  selected finite distances from the equator. 
Under these conditions, the solutions yield distributions 
and magnitudes of pressure-height and relative vorticity 
which are reasonable and meteorologically acceptable. 
The magnitude of the model divergence is, however, 
considerably smaller than observed values [3]. This is 
the result of the adiabatic, nonviscous constraints placed 
upon the motions. The magnitude of the model pressure- 
height gradient is extremely small; for this reason the 
perturbations studied here would probably be undetect- 
able in the pressure field with present observational 
systems. 

The wave speeds for all cases considered are such that 
the waves progress westward faster than the basic current, 
but less rapidly than the analogous nondivergent waves. 
The departures from the nondivergent wave speeds are 
considerable at  longer wavelengths, especially in the 
Asymmetric Mode. Hence, in all cases, the divergence 
pattern is such that the westward movement of the 
perturbation is retarded ; there is divergence (convergence) 
to  the west of cyclonic (anticyclonic) relative vorticity. 
In both modes, the model divergence increases with the 
perturbation wavelength except in the Symmetric Mode 
when the meridional extent of the perturbation is small. 
Equatorial waves of small meridional extent have maxi- 
mum divergence for mid-range values of wavelength, and 
become less divergent with increases in wavelength. Also, 

meridional extent of the perturbation is decreased. 
The model relative vorticity decreases with wavelength 

except in the Asymmetric Mode when the meridional 
extent of the wave is small. Here the relative vorticity 
increases at  longer wavelengths because of the dominating 
role of the meridional shear of the zonal component of 
perturbation mind. 

Perturbations centered on the equator have north- 
south components of velocity which (1) are near geo- 
strophic at  low latitudes, (2 )become less geostrophic as the 
meridional extent of the disturbance is decreased, and 

I 

I 

I 

I 
I 

I in both modes, the motions become less divergent as the 

(3) become less geostrophic as the perturbation wave- 
length is increased. Perturbations which *are centered off 
the equator have meridional velocity components which 
are near geostrophic only in the latitudinal zones asso- 
ciated with their circulation centers. In  both modes, 
the east-west velocity component is near geostrophic only 
a t  large distances from the equator. In  the above 
remarks, "near" geostrophic implies that the ratios 
Roz, R,, are approximately 0.2 or less. This condition 
holds for only certain values of the parameters, and then 
it may hold over only a part of the latitudinal zone being 
considered. In  general, the acceleration terms are at  
least the same order of magnitude as the Coriolis term 
and, hence, their role in the wind-pressure balance cannot 
be ignored 

In a series of numerical experiments conducted a t  the 
National Hurricane Research Laboratory, the symmetric 
solutions (equations (21)-(24), (26)-(29)) to the linearized 
equations (1)-(4) were used as initial and boundary 
conditions for a numerical non-linear primitive equation 
forecast model. I n  the cases considered, the patterns 
moved with very nearly the wave speeds deduced above 
and with very little distortion over four days of real 
time. This indicates that for the types of motion con- 
sidered here, the solutions to the linear equations are 
extremely good approximations to the non-linear solutions. 

APPENDIX 

Equation (13) can be mitten as 

which is factorable when a=O. 
For non-zero values of a the roots are 

Aa= [ d m -  B] 1'3- [~mzw]1'3 (A2) 

and 

where 

and 

(A3) 
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